A quadrature-based third-order moment method for dilute gas-particle flows
نویسنده
چکیده
Dilute gas-particle flows can be described by a kinetic equation containing terms for spatial transport, gravity, fluid drag, and particle-particle collisions. However, the direct numerical solution of the kinetic equation is intractable for most applications due to the large number of independent variables. A useful alternative is to reformulate the problem in terms of the moments of the velocity distribution function. Closure of the moment equations is challenging for flows away from the equilibrium (Maxwellian) limit. In this work, a quadrature-based third-order moment closure is derived that can be applied to gas-particle flows at any Knudsen number. A key component of quadrature-based closures is the moment-inversion algorithm used to find the weights and abscissas. A robust inversion procedure is proposed for moments up to third order, and tested for three example applications (Riemann shock problem, impinging jets, and vertical channel flow). Extension of the moment-inversion algorithm to fifth (or higher) order is possible, but left to future work. The spatial fluxes in the moment equations are treated using a kinetic description and hence a gradient-diffusion model is not used to close the fluxes. Because the quadraturebased moment method employs the moment transport equations directly instead of a discretized form of the Boltzmann equation, the mass, momentum and energy are conserved for arbitrary Knudsen number (including the Euler limit). While developed here for dilute gas-particle flows, quadrature-based moment methods can, in principle, be applied to any application that can be modeled by a kinetic equation (e.g., thermal and non-isothermal flows currently treated using lattice Boltzmann methods), and examples are given from the literature.
منابع مشابه
A fully coupled fluid-particle flow solver using quadrature-based moment method with high-order realizable schemes on unstructured grids
Kinetic Equations containing terms for spatial transport, gravity, fluid drag and particle-particle collisions can be used to model dilute gas-particle flows. However, the enormity of independent variables makes direct numerical simulation of these equations almost impossible for practical problems. A viable alternative is to reformulate the problem in terms of moments of the velocity distribut...
متن کاملNumerical simulation of turbulent gas-particle flow in a riser using a quadrature-based moment method
Gas-particle flows are used in many industrial applications in the energy, oil and gas fields, such as coal gasification, production of light hydrocarbons by fluid catalytic cracking, catalytic combustion and different treatments aiming to reduce or eliminate pollutants. The particle phase of a gas-particle flow is described by analogy to a granular gas, by finding an approximate solution of th...
متن کاملA quadrature-based moment method for dilute fluid-particle flows
Gas-particle and other dispersed-phase flows can be described by a kinetic equation containing terms for spatial transport, acceleration, and particle processes (such as evaporation or collisions). In principle, the kinetic description is valid from the dilute (non-collisional) to the dense limit. However, its numerical solution in multi-dimensional systems is intractable due to the large numbe...
متن کاملRealizable high-order finite-volume schemes for quadrature-based moment methods applied to diffusion population balance equations
Dilute gas–particle flows can be described by a kinetic equation containing terms for spatial transport, gravity, fluid drag and particle–particle collisions. However, direct numerical solution of kinetic equations is often infeasible because of the large number of independent variables. An alternative is to reformulate the problem in terms of the moments of the velocity distribution. Recently,...
متن کاملDevelopment of high-order realizable finite-volume schemes for quadrature-based moment method
Kinetic equations containing terms for spatial transport, gravity, fluid drag and particleparticle collisions can be used to model dilute gas-particle flows. However, the enormity of independent variables makes direct numerical simulation of these equations almost impossible for practical problems. A viable alternative is to reformulate the problem in terms of moments of velocity distribution. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 227 شماره
صفحات -
تاریخ انتشار 2008